Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
2.
Toxins (Basel) ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202169

RESUMO

Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 µg/mL. Compared with the control group, 40 µg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.


Assuntos
Antifúngicos/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micotoxinas/biossíntese , Micotoxinas/química , Timol/química , Transcriptoma
3.
Sci Rep ; 12(1): 2191, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140298

RESUMO

Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.


Assuntos
Antifúngicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , /química , Colocasia/efeitos dos fármacos , Colocasia/parasitologia , Fungos/efeitos dos fármacos , Germinação/efeitos dos fármacos , Micélio/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Esporângios/efeitos dos fármacos , Esporos/efeitos dos fármacos
4.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163975

RESUMO

Cordyceps cicadae (CC), an entomogenous fungus that has been reported to have therapeutic glaucoma, is a major cause of blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) death, mostly due to elevated intraocular pressure (IOP). Here, an ethanolic extract of C. cicadae mycelium (CCME), a traditional medicinal mushroom, was studied for its potential in lowering IOP in rat and rabbit models. Data showed that CCME could significantly (60.5%) reduce the IOP induced by microbead occlusion after 56 days of oral administration. The apoptosis of retinal ganglion cells (RGCs) in rats decreased by 77.2%. CCME was also shown to lower the IOP of normal and dextrose-infusion-induced rabbits within 60 min after oral feeding. There were dose effects, and the effect was repeatable. The active ingredient, N6-(2-hydroxyethyl)-adenosine (HEA), was also shown to alleviate 29.6% IOP at 0.2 mg/kg body weight in this rabbit model. CCME was confirmed with only minor inhibition in the phosphorylated myosin light chain 2 (pMLC2) pathway.


Assuntos
Cordyceps/enzimologia , Cordyceps/metabolismo , Pressão Intraocular/fisiologia , Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Glaucoma/metabolismo , Pressão Intraocular/efeitos dos fármacos , Masculino , Micélio/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos
5.
Microbiol Spectr ; 10(1): e0006321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985327

RESUMO

Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.


Assuntos
Aspergillus fumigatus/química , Aspergillus fumigatus/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Espectrofotometria/métodos , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Parede Celular/genética , Parede Celular/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Hifas/química , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/crescimento & desenvolvimento , Micélio/química , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/crescimento & desenvolvimento
6.
Sci Rep ; 12(1): 340, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013424

RESUMO

Electrical activity of fungus Pleurotus ostreatus is characterised by slow (h) irregular waves of baseline potential drift and fast (min) action potential likes spikes of the electrical potential. An exposure of the myceliated substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Clorofórmio/farmacologia , Micélio/efeitos dos fármacos , Pleurotus/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Pleurotus/crescimento & desenvolvimento , Fatores de Tempo , Volatilização
7.
PLoS One ; 17(1): e0262836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051224

RESUMO

Alternaria porri (Ellis) Clf. causes purple blotch disease on Allium plants which results in the reduction of crop yields and quality. In this study, to efficiently find natural antifungal compounds against A. porri, we optimized the culture condition for the spore production of A. porri and the disease development condition for an in vivo antifungal assay. From tested plant materials, the methanol extracts derived from ten plant species belonging to the families Cupressaceae, Fabaceae, Dipterocarpaceae, Apocynaceae, Lauraceae, and Melastomataceae were selected as potent antifungal agents against A. porri. In particular, the methanol extract of Caryodaphnopsis baviensis (Lec.) A.-Shaw completely inhibited the growth of A. porri at a concentration of 111 µg/ml. Based on chromatographic and spectroscopic analyses, a neolignan compound magnolol was identified as the antifungal compound of the C. baviensis methanol extract. Magnolol showed a significant inhibitory activity against the spore germination and mycelial growth of A. porri with IC50 values of 4.5 and 5.4 µg/ml, respectively. Furthermore, when magnolol was sprayed onto onion plants at a concentration of 500 µg/ml, it showed more than an 80% disease control efficacy for the purple blotch diseases. In terms of the antifungal mechanism of magnolol, we explored the in vitro inhibitory activity on individual oxidative phosphorylation complexes I-V, and the results showed that magnolol acts as multiple inhibitors of complexes I-V. Taken together, our results provide new insight into the potential of magnolol as an active ingredient with antifungal inhibitory action to control purple blotch on onions.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Compostos de Bifenilo/farmacologia , Lauraceae/química , Lignanas/farmacologia , Cebolas/microbiologia , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Metanol/química , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento
8.
J Toxicol Environ Health A ; 85(2): 43-55, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459359

RESUMO

Monilinia fructicola (Wint.) Honey is a plant pathogenic fungus that infects stone fruits such as peach, nectarine and plum, which are high demand cultivars found in Brazil. This pathogen may remain latent in the host, showing no apparent signs of disease, and consequently may spread to different countries. The aim of this study was to evaluate the activity of hydroalcoholic extract (HydE) obtained from Lactarius deliciosus (L.) Sf. Gray a mushroom, against M. fructicola phytopathogenic-induced mycelial growth. In addition, the purpose of this study was to examine phytotoxicity attributed to HydE using Brassica oleracea seeds, as well as cytotoxic analysis of this extract on cells of mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) (ATCC TIB-67). The L. deliciosus HydE inhibited fungal growth and reduced phytopathogen mycelial development at a concentration of 1.25 mg/ml. Our results demonstrated that the extract exhibited phytotoxicity as evidenced by (1) interference on germination percentage and rate index, (2) decreased root and initial growth measures, and (3) lower fresh weight of seedlings but no cytotoxicity in Vero cell lines. Data suggest that the use of the L. deliciosus extracts may be beneficial for fungal control without any apparent adverse actions on mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) viability.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/química , Agentes de Controle Biológico/farmacologia , Animais , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Brasil , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Frutas/microbiologia , Germinação/efeitos dos fármacos , Camundongos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Fenol/análise , Doenças das Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
9.
Int J Biol Macromol ; 192: 210-218, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619278

RESUMO

Schizophyllum commune (S. commune) polysaccharides are biomacromolecules with multiple biological activities and wide applications. In this study, polysaccharide production through submerged fermentation of S. commune using different surfactants was investigated. The addition of 1 g/L of polyoxyethylene sorbitan monooleate (Tween 80) at the beginning of the fermentation showed the best promotional effects on collective exopolysaccharide (EPS) production (which increased by 37.17%) while shortening the production cycle by 2 days. The monosaccharide composition of the EPS produced when the added Tween 80 was similar to that of the control; however, the molecular weight (Mw) was lower. Notably, the addition of Tween 80 significantly increased the ATP levels and the transcription levels of phosphoglucomutase and ß-glucan synthase genes in the polysaccharide synthesis pathway. The addition of Tween 80 reduced the pellet size of the mycelium compared to that of the control, but did not significantly change the microstructure of the mycelial cells. This study proposes an efficient strategy for the production of polysaccharides through submerged fermentation of S. commune, and elucidates the detailed mechanism of using Tween 80 as a fermentation stimulatory reagent.


Assuntos
Fermentação , Polissacarídeos/biossíntese , Schizophyllum/efeitos dos fármacos , Schizophyllum/metabolismo , Tensoativos/farmacologia , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Membrana Celular/metabolismo , Parede Celular/química , Relação Dose-Resposta a Droga , Glucose/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Permeabilidade , Polissorbatos/metabolismo , Polissorbatos/farmacologia , Tensoativos/metabolismo
10.
World J Microbiol Biotechnol ; 37(12): 203, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669053

RESUMO

White mold disease, caused by the phytopathogen Sclerotinia sclerotiorum, provokes severe productivity losses in several economically important crops. Biocontrol agents, especially antagonist filamentous fungi, are environmentally friendly alternatives to the chemical fungicides used in white mold management. The objective of this study was to screen for basidiomycete fungi capable of inhibiting S. sclerotiorum and investigate their bioactive metabolites responsible for antifungal activities. Two out of 17 tested basidiomycete isolates inhibited the mycelial growth of S. sclerotiorum in pair culture experiments on agar plates, namely Oudemansiella canarii BRM-044600 and Laetisaria arvalis ATCC52088. O. canarii BRM-044600 liquid culture filtrate exhibited the greatest antifungal activity and was selected for further investigation. UHPLC-MS analysis suggests that six putative strobilurins, including strobilurin A and/or stereoisomers of this compound (m/z 259.1299, [M + H]+) and three putative strobilurins with m/z 257.1184 ([M + H]+) are likely responsible for the antifungal activity observed in the culture filtrate. For the first time, this work demonstrated the potential of O. canarii for white mold biocontrol and strobilurin production.


Assuntos
Agaricales/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Metabolismo Secundário , Basidiomycota , Agentes de Controle Biológico/farmacologia , Ácidos Graxos Insaturados/metabolismo , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Estereoisomerismo , Estrobilurinas/metabolismo
11.
J Basic Microbiol ; 61(10): 923-939, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34374439

RESUMO

Pea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P. sativum L.) plants in Chapainawabganj district, Bangladesh. A fungus with white-appressed mycelia and large sclerotia was consistently isolated from symptomatic tissues. The fungus formed funnel-shaped apothecia with sac-like ascus and endogenously formed ascospores. Healthy pea plants inoculated with the fungus produced typical white mold symptoms. The internal transcribed spacer sequences of the fungus were 100% similar to Sclerotinia sclerotiorum, considering the fungus to be the causative agent of white mold disease in pea, which was the first record in Bangladesh. Mycelial growth and sclerotial development of S. sclerotiorum were favored at 20°C and pH 5.0. Glucose was the best carbon source to support hyphal growth and sclerotia formation. Bavistin and Amistar Top inhibited the radial growth of the fungus completely at the lowest concentration. In planta, foliar application of Amistar Top showed the considerable potential to control the disease at 1.0% concentration until 7 days after spraying, while Bavistin prevented infection significantly until 15 days after spraying. A large majority (70.93%) of genotypes, including tested released pea cultivars, were susceptible, while six genotypes (6.98%) appeared resistant to the disease. These results on identification, characterization, host resistance, and fungicidal control of white mold could be valuable to achieve improved management of a new disease problem for pea cultivation.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Fungicidas Industriais/farmacologia , Genótipo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Virulência
12.
Int J Biol Macromol ; 188: 751-763, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34384804

RESUMO

The aim of the present study was to encapsulate linalool into chitosan nanocomposite (Nm-linalool) for developing novel controlled release delivery system in order to protect stored rice against fungal infestation, aflatoxin B1 (AFB1) contamination, and lipid peroxidation. The chitosan-linalool nanocomposite showed spherical shapes, smooth surface with monomodal distribution as revealed by SEM and AFM investigation. FTIR and XRD represented peak shifting and changes in degree of crystallinity after incorporation of linalool into chitosan nanocomposite. Nanoencapsulation of linalool showed higher zeta potential and lowered polydispersity index. TGA analysis reflected the stability of Nm-linalool with reduced weight loss at varying temperatures. Biphasic pattern, with initial rapid release followed by sustained release illustrated controlled delivery of linalool from chitosan nanocomposite, a prerequisite for shelf-life enhancement of stored food products. Chitosan nanocomposite incorporating linalool displayed prominent antifungal and antiaflatoxigenic activity during in vitro as well as in situ investigation in rice with improved antioxidant potentiality. Further, Nm-linalool displayed considerable reduction of lipid peroxidation in rice without exerting any adverse impact on organoleptic attributes. In conclusion, the investigation strengthens the application of chitosan-linalool nanocomposite as an innovative controlled nano-delivery system for its practical application as novel environmentally friendly eco-smart preservative in food and agricultural industries.


Assuntos
Monoterpenos Acíclicos/farmacologia , Materiais Biocompatíveis/química , Fenômenos Químicos , Quitosana/química , Conservação de Alimentos , Nanocompostos/química , Aflatoxina B1/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Coloides/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Fungos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Micélio/efeitos dos fármacos , Nanocompostos/ultraestrutura , Oryza/microbiologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Termogravimetria , Difração de Raios X
13.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299538

RESUMO

Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. However, no study has focused on neral and geranial against T. rubrum, which hinders the clinical application of CIT. This study aimed to compare antifungal activities of neral and geranial and preliminarily elucidate their ergosterol biosynthesis inhibition mechanism against T. rubrum. Herein, the disc diffusion assays, cellular leakage measurement, flow cytometry, SEM/TEM observation, sterol quantification, and sterol pattern change analyses were employed. The results showed geranial exhibited larger inhibition zones (p < 0.01 or 0.05), higher cellular leakage rates (p < 0.01), increased conidia with damaged membranes (p < 0.01) within 24 h, more distinct shriveled mycelium in SEM, prominent cellular material leakage, membrane damage, and morphological changes in TEM. Furthermore, geranial possessed more promising ergosterol biosynthesis inhibition effects than neral, and both induced the synthesis of 7-Dehydrodesmosterol and Cholesta-5,7,22,24-tetraen-3ß-ol, which represented marker sterols when ERG6 was affected. These results suggest geranial is more potent than neral against T. rubrum, and both inhibit ergosterol biosynthesis by affecting ERG6.


Assuntos
Monoterpenos Acíclicos/farmacologia , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Dermatomicoses/tratamento farmacológico , Ergosterol/farmacologia , Testes de Sensibilidade Microbiana/métodos , Monoterpenos/farmacologia , Micélio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Esporos Fúngicos/efeitos dos fármacos
14.
Curr Issues Mol Biol ; 43(1): 365-383, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203617

RESUMO

Although the individual consumption of medicinal mushrooms, including Phellinus linteus (PL), Ganoderma lucidum (GL), and Inonotus obliquus (IO), is known to be neuroprotective, the associated mechanisms underlying their therapeutic synergism on focal cerebral ischemia (fCI) have yet to be elucidated. This study aimed to demonstrate the neuroprotective effects of mixed mushroom mycelia (MMM) against experimental fCI. The water-fractions, ethanolic-fractions, and ethyl acetate-fractions of the MMM (PL, GL, and IO) grown in a barley medium using solid-state fermentation techniques were prepared and their protective effects against glutamate-induced excitotoxicity were compared in PC-12 cells. After the identification of the water extracts of MMM (wMMM) as the most suitable form, which possessed the lowest toxicity and highest efficacy, further analyses for evaluating the anti-apoptotic effects of wMMM, including Hoechst 33258-based nuclear staining, fluorescence-activated cell sorting, and reactive oxygen species (ROS) detection assays, were performed. Rats were subjected to a 90 min middle cerebral artery occlusion and reperfusion, after which a wMMM treatment resulted in significant dose-dependent improvements across a number of parameters. Furthermore, measurements of intracellular ROS and levels of antioxidant enzymes revealed a wMMM-mediated ROS attenuation and antioxidant enzyme upregulation. We suggest that wMMM is neuroprotective against fCI through its anti-apoptotic and anti-oxidative effects.


Assuntos
Agaricales/química , Isquemia Encefálica/prevenção & controle , Hordeum/química , Micélio/química , Fármacos Neuroprotetores/farmacologia , Água/química , Agaricales/crescimento & desenvolvimento , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Meios de Cultura/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
15.
J Basic Microbiol ; 61(8): 736-744, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34252217

RESUMO

Primordia formation is the first and most critical step in the development of fruiting bodies of edible fungi. In this study, the effects of exogenous ascorbic acid (ASA) on the Pleurotus ostreatus mycelia growth and primordia formation were researched and the results showed that the growth rate of P. ostreatus mycelia was accelerated and the time of primordia formation was advanced. The protein content and ascorbate oxidase (AAO) activity analysis showed that with the increase of ASA concentration, the protein content of mycelia first decreased and then increased, and in a certain concentration range, exogenous ASA could significantly promote the activity of AAO. Further expression analysis of the development regulating genes (Pofst3 and Pofst4) as well as blue light receptor coding genes (PoWC-1 and PoWC-2) showed the expression levels of those four genes all changed after the exogenous ASA addition, which indicated that the expression changes of PoWC-1 and PoWC-2, two key genes in the light morphogenesis, might affect the expression levels of development regulating genes Pofst3 and Pofst4, so as to lead to the formation of primordia in advance.


Assuntos
Ácido Ascórbico/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Pleurotus/efeitos dos fármacos , Pleurotus/crescimento & desenvolvimento , Ascorbato Oxidase , Ácido Ascórbico/metabolismo , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Micélio/genética , Micélio/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
16.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201482

RESUMO

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


Assuntos
Cnidium/química , Cumarínicos/administração & dosagem , Fusarium/efeitos dos fármacos , Micélio/efeitos dos fármacos , Solanum tuberosum/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Micélio/citologia , Solanum tuberosum/microbiologia
17.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068039

RESUMO

The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition of fungi species. However, their application as natural antifungal agents are limited due to their volatility, low stability, and restricted administration routes. Nanotechnology is receiving particular attention to overcome the drawbacks of EOs such as volatility, degradation, and high sensitivity to environmental/external factors. For the aforementioned reasons, nanoencapsulation of bioactive compounds, for instance, EOs, facilitates protection and controlled-release attributes. Nanoliposomes are bilayer vesicles, at nanoscale, composed of phospholipids, and can encapsulate hydrophilic and hydrophobic compounds. Considering the above critiques, herein, we report the in-house fabrication and nano-size characterization of bioactive oregano essential oil (Origanum vulgare L.) (OEO) molecules loaded with small unilamellar vesicles (SUV) nanoliposomes. The study was focused on three main points: (1) multi-compositional fabrication nanoliposomes using a thin film hydration-sonication method; (2) nano-size characterization using various analytical and imaging techniques; and (3) antifungal efficacy of as-developed OEO nanoliposomes against Trichophyton rubrum (T. rubrum) by performing the mycelial growth inhibition test (MGI). The mean size of the nanoliposomes was around 77.46 ± 0.66 nm and 110.4 ± 0.98 nm, polydispersity index (PdI) of 0.413 ± 0.015, zeta potential values up to -36.94 ± 0.36 mV were obtained by dynamic light scattering (DLS). and spherical morphology was confirmed by scanning electron microscopy (SEM). The presence of OEO into nanoliposomes was displayed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Entrapment efficiency values of 79.55 ± 6.9% were achieved for OEO nanoliposomes. In vitro antifungal activity of nanoliposomes tested against T. rubrum strains revealed that OEO nanoliposomes exhibited the highest MGI, 81.66 ± 0.86%, at a concentration of 1.5 µL/mL compared to the rest of the formulations. In summary, this work showed that bioactive OEO molecules with loaded nanoliposomes could be used as natural antifungal agents for therapeutical purposes against T. rubrum.


Assuntos
Antifúngicos/farmacologia , Nanopartículas/química , Óleos Voláteis/química , Origanum/química , Tamanho da Partícula , Fungos/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Nanopartículas/ultraestrutura , Fosfatidilcolinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Lipossomas Unilamelares
18.
Toxins (Basel) ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066154

RESUMO

Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination inhibition methods to determine the inhibitory effect of quinofumelin against F. graminearum in vitro. The results indicated that quinofumelin excellently inhibited mycelial growth and spore germination of F. graminearum, with the average EC50 values of 0.019 ± 0.007 µg/mL and 0.087 ± 0.024 µg/mL, respectively. In addition, we found that quinofumelin could significantly decrease deoxynivalenol (DON) production and inhibit the expression of DON-related gene TRI5 in F. graminearum. Furthermore, we found that quinofumelin could disrupt the formation of Fusarium toxisome, a structure for producing DON. Western blot analysis demonstrated that the translation level of TRI1, a marker gene for Fusarium toxisome, was suppressed by quinofumelin. The protective and curative assays indicated that quinofumelin had an excellent control efficiency against F. graminearum on wheat coleoptiles. Taken together, quinofumelin exhibits not only an excellent antifungal activity on mycelial growth and spore germination, but also could inhibit DON biosynthesis in F. graminearum. The findings provide a novel candidate for controlling FHB caused by F. graminearum.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Tricotecenos/metabolismo , Antifúngicos/administração & dosagem , Relação Dose-Resposta a Droga , Fusarium/genética , Genes Fúngicos/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos
19.
World J Microbiol Biotechnol ; 37(6): 93, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33948741

RESUMO

Chlorogenic acid is a plant polyphenol with antioxidant and antimicrobial activities. Fusarium fujikuroi is a fungal pathogen that causes many vegetables and fruits, including tomato, to rot. The effects of chlorogenic acid on the development of Fusarium rot of cherry tomato fruit were examined in the present study. Results showed that conidial germination, germ tube elongation, cell viability, and mycelial growth of F. fujikuroi were all significantly inhibited by chlorogenic acid. Chlorogenic acid stimulated the accumulation of reactive oxygen species (ROS), leading to cell apoptosis in F. fujikuroi. The addition of N-acetylcysteine partially recovered the mycelial growth, implying the antifungal activity of chlorogenic acid is related to a ROS burst. The application of chlorogenic acid decreased disease incidence and severity in cherry tomato fruit in a concentration-dependent manner. Taken together, these results suggest that chlorogenic acid inhibits the postharvest rot of cherry tomato fruit caused by F. fujikuroi by inducing cellular oxidative stress in the pathogen.


Assuntos
Ácido Clorogênico/farmacologia , Fusarium/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Acetilcisteína/farmacologia , Relação Dose-Resposta a Droga , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Solanum lycopersicum/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Micélio/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/efeitos dos fármacos
20.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802719

RESUMO

Plant diseases reduce crop yield and quality, hampering the development of agriculture. Fungicides, which restrict chemical synthesis in fungi, are the strongest controls for plant diseases. However, the harmful effects on the environment due to continued and uncontrolled utilization of fungicides have become a major challenge in recent years. Plant-sourced fungicides are a class of plant antibacterial substances or compounds that induce plant defenses. They can kill or inhibit the growth of target pathogens efficiently with no or low toxicity, they degrade readily, and do not prompt development of resistance, which has led to their widespread use. In this study, the growth inhibition effect of 24 plant-sourced ethanol extracts on rice sprigs was studied. Ethanol extract of gallnuts and cloves inhibited the growth of bacteria by up to 100%. Indoor toxicity measurement results showed that the gallnut and glove constituents inhibition reached 39.23 µg/mL and 18.82 µg/mL, respectively. Extract treated rice sprigs were dry and wrinkled. Gallnut caused intracellular swelling and breakage of mitochondria, disintegration of nuclei, aggregation of protoplasts, and complete degradation of organelles in hyphae and aggregation of cellular contents. Protection of Rhizoctonia solani viability reached 46.8% for gallnut and 37.88% for clove in water emulsions of 1000 µg/mL gallnut and clove in the presence of 0.1% Tween 80. The protection by gallnut was significantly stronger than that of clove. The data could inform the choice of plant-sourced fungicides for the comprehensive treatment of rice sprig disease. The studied extract effectively protected rice sprigs and could be a suitable alternative to commercially available chemical fungicides. Further optimized field trials are needed to effectively sterilize rice paddies.


Assuntos
Misturas Complexas/farmacologia , Oryza/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhus/química , Syzygium/química , Cromatografia por Troca Iônica , Misturas Complexas/toxicidade , Etanol/química , Eugenol/análise , Fungicidas Industriais/farmacologia , Ácidos Láuricos/análise , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Micélio/efeitos dos fármacos , Micélio/ultraestrutura , Oryza/microbiologia , Doenças das Plantas/microbiologia , Extratos Vegetais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...